Although the exploitation of AM technologies continues to accelerate, a key barrier to adoption of AM is the need for in-process monitoring and process control [1, 2].
Equivalence-based and model-based certifications require reliable data set to validate complex multi-physics models. To move towards the certify-as-you-build scheme, industries call for sound in-situ process monitoring and quality control.
0 Comments
A few months ago, we were wondering about process control in powder bed fusion of reactive powders. What are the impacts of particles’ surface contamination on the fabrication of metal components? And what are the best ways to minimise it during the complete manufacturing cycle?
Then, very few studies were trying to assess the impact of powder particles surface chemistry on the process (powder spreading, melt wettability, pores formation, etc…) and on the final product characteristics (relative density, etc). As more data get publicly available, we can present the results of a detailed investigation aiming to 1) understand the effects of powder surface chemistry, 2) minimise particles surface contamination on the finished products and 3) improve SLM process control. Qualification and certification routes for additive manufacturing of mass produced metal components8/4/2016
Various strategic efforts have been conducted to develop AM [1,2] and define qualification and certification needs [3,4]
Yet, a current lack of standardised measurements science and protocols impedes the wider acceptance of industrial AM. Few companies can afford to develop their own internal foundations for qualification of materials, processes, and parts built with AM [5]. |
We provide practical and actionable info dedicated to additive manufacturing of high-value metal components
Categories
All
|